Lake Oscaleta, Westchester Co., Three Lakes Council

CSLAP Participation
- **Volunteers**: Janet Andersen, Lou Feeney
- **Years**: 2006-2011, 2013-2017

Lake Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Surface Area (ac/ha)</th>
<th>Max Depth (ft/m)</th>
<th>Mean Depth (ft/m)</th>
<th>Retention Time (years)</th>
<th>Water Class</th>
<th>Dam Class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>58</td>
<td>38</td>
<td>22</td>
<td>0.71</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

Watershed Characteristics

<table>
<thead>
<tr>
<th>Watershed Area (ac/ha)</th>
<th>1278</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watershed/Lake Ratio</td>
<td>22</td>
</tr>
<tr>
<td>Lake and Wetlands</td>
<td>20.0%</td>
</tr>
<tr>
<td>Agricultural</td>
<td>1.4%</td>
</tr>
<tr>
<td>Forests, shrubs, grasses</td>
<td>72.2%</td>
</tr>
<tr>
<td>Residential</td>
<td>6.4%</td>
</tr>
<tr>
<td>Urban</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

CSLAP Data

<table>
<thead>
<tr>
<th>Trophic State</th>
<th>HABs Susceptibility</th>
<th>Invasive Vulnerability</th>
<th>PWL Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesoeutrophic</td>
<td>Moderate</td>
<td>High</td>
<td>Stressed</td>
</tr>
</tbody>
</table>

2017 Sampling Results

Open Water Indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>6/10</th>
<th>6/25</th>
<th>7/9</th>
<th>7/23</th>
<th>8/6</th>
<th>8/20</th>
<th>9/4</th>
<th>9/16</th>
<th>Seasonal Change</th>
<th>Long Term Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chl.a (µg/L)</td>
<td>4.6</td>
<td>5.1</td>
<td>7.7</td>
<td>10.9</td>
<td>8.3</td>
<td>3.2</td>
<td>4.7</td>
<td>4.5</td>
<td></td>
<td>7.4</td>
</tr>
<tr>
<td>BG Chl.a (µg/L)</td>
<td>0.5</td>
<td>0.2</td>
<td>3.3</td>
<td>3.4</td>
<td>1.4</td>
<td>0.6</td>
<td>0.3</td>
<td>0.2</td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>Clarity (m)</td>
<td>3</td>
<td>2.4</td>
<td>2.4</td>
<td>2.1</td>
<td>2.7</td>
<td>3.4</td>
<td>4.3</td>
<td>4</td>
<td></td>
<td>2.9</td>
</tr>
<tr>
<td>pH</td>
<td>7.9</td>
<td>8.0</td>
<td>7.3</td>
<td>8.1</td>
<td>8.2</td>
<td>7.7</td>
<td>7.7</td>
<td>8.1</td>
<td></td>
<td>7.9</td>
</tr>
<tr>
<td>Cond (µmho/cm)</td>
<td>184.5</td>
<td>173.7</td>
<td>167.1</td>
<td>164.1</td>
<td>189.1</td>
<td>171.4</td>
<td>196.9</td>
<td>159.3</td>
<td></td>
<td>147</td>
</tr>
<tr>
<td>Surf Temp (°C)</td>
<td>21</td>
<td>27</td>
<td>26</td>
<td>29</td>
<td>25</td>
<td>27</td>
<td>21</td>
<td>23</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>Bott Temp (°C)</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>11</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>TN (mg/L)</td>
<td>.376</td>
<td>.492</td>
<td>.491</td>
<td>.625</td>
<td>.531</td>
<td>.465</td>
<td>.372</td>
<td>.362</td>
<td></td>
<td>.435</td>
</tr>
<tr>
<td>TP (mg/L)</td>
<td>.022</td>
<td>.022</td>
<td>.016</td>
<td>.015</td>
<td>.014</td>
<td>.013</td>
<td>.017</td>
<td>.017</td>
<td></td>
<td>.020</td>
</tr>
<tr>
<td>Deep TP (mg/L)</td>
<td>.07</td>
<td>.132</td>
<td>.116</td>
<td>.155</td>
<td>.14</td>
<td>.126</td>
<td>.423</td>
<td>.22</td>
<td></td>
<td>.088</td>
</tr>
<tr>
<td>N:P Ratio</td>
<td>17</td>
<td>22</td>
<td>31</td>
<td>42</td>
<td>38</td>
<td>36</td>
<td>22</td>
<td>21</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shoreline bloom and HABs notifications

<table>
<thead>
<tr>
<th>Date of first listing</th>
<th>Date of last listing</th>
<th># of weeks on DEC notification list</th>
<th># of weeks with updates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Shoreline HAB Sample Dates 2017

<table>
<thead>
<tr>
<th>HAB Indicators</th>
<th>HAB Criteria</th>
<th>6/10</th>
<th>6/25</th>
<th>7/9</th>
<th>7/23</th>
<th>8/6</th>
<th>8/20</th>
<th>9/4</th>
<th>9/16</th>
<th>Seasonal Change</th>
<th>Long Term Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGA</td>
<td>25 µg/L</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microcystin</td>
<td>20 µg/L</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anatoxin-a</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>
HAB Status

2017 Open Water Algae Samples

2017 Open Water Toxin Levels

2017 Shoreline Algae Samples

2017 Shoreline Toxin Levels

Lake Oscaleta Long Term Trend Analysis

Clarity

Chlorophyll a

Surface and Deep Phosphorus

Lake Perception
Lake Oscaleta Long Term Trend Analysis

Nitrogen

Nitrogen levels are shown over a period from 1985 to 2017. The graph illustrates the trends in TN (Total Nitrogen), NOx (Nitrite and Nitrate), and NH4 (Ammonia).

pH

The pH levels are plotted from 1985 to 2017. The pH levels are categorized into Highly Alkaline, Slightly Alkaline, Circumneutral, and Acidic ranges based on the New York State Water Quality standards.

Temperature

The average summer water temperatures for surface and bottom water are shown from 1985 to 2017. The temperatures show a general trend over the years.

Specific Conductance

The specific conductance levels are plotted for years 1986 to 2010. The conductance levels are categorized into Hardwater, Softwater, and values above the New York State Water Quality standard are also indicated.

Lake Oscaleta In-Season Analysis

In Season Temperature

The in-season temperature data from 2017 is compared with typical top and bottom temperatures. The data is represented from June to September 2017.

In Season Water Clarity

The in-season water clarity is evaluated using Secchi disk transparency measurements from June to September 2017.
Scorecard

Lake Use

<table>
<thead>
<tr>
<th>Potable Water</th>
<th>Swimming</th>
<th>Recreation</th>
<th>Aquatic Life</th>
<th>Aesthetics</th>
<th>Habitat</th>
<th>Fish Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lake Use Scores

- **Potable Water**: Not applicable
- **Swimming**: No impacts
- **Recreation**: Algae levels
- **Aquatic Life**: Bottom oxygen
- **Aesthetics**: Elevated nutrients
- **Habitat**: Invasive plants
- **Fish Consumption**: Not applicable

Lake Use Status

- **Supported/Good**: Green
- **Threatened/Fair**: Yellow
- **Stressed/Poor**: Red
- **Impaired**: Black
- **Not Known**: White

Yearly Scores

- **PWL**: 2017
- **Average Year**: 2017
- **2017**: 2017

Primary Issue

- **PWL**: Primary Issue
Summary

2017 compared to prior years: Lake Oscaleta is *mesoeutrophic*, or moderately to highly productive, based on moderately high nutrient (phosphorus) and algae (chlorophyll *a*) levels, and intermediate water clarity. Phosphorus and chlorophyll *a* levels were slightly lower than usual in 2017, but water clarity was close to normal, and it is likely that most of these changes were within the normal range of variability for Lake Oscaleta. Recreational assessments were slightly more favorable than usual in 2017, despite a slightly higher frequency of surface plant coverage which affected these assessments throughout the summer. Conductivity was also higher than usual in 2017, as in many New York state lakes.

Compared to nearby lakes: Lake Oscaleta has slightly higher water clarity, and slightly lower nutrient and algae levels, than other nearby (Lower Hudson region) lakes. Aquatic plant coverage is usually similar to plant coverage in many of these other lakes, and was higher than usual in 2017. Chloride levels are between the 50th and 75th percentile of New York state lakes, indicating the potential for aquatic life impacts (although none have been documented). Water quality is usually slightly more favorable (lower productivity) in Lake Oscaleta and Lake Waccabuc than in Lake Rippowam.

Trends: Conductivity has increased substantially in recent years, while deepwater nutrient levels and temperatures have also increased. Recreational assessments may also have improved over the last decade, despite the lack of clear changes in water clarity or algae levels.

Algal blooms and HABS: Lake Oscaleta exhibits periodic shoreline blooms, comprised of *Microcystis* and *Anabaena* (now called *Dolichospermum*), although toxin levels have been low and these blooms are not common. Open water algae levels are periodically elevated, but these are most often comprised of green algae, and toxin levels are low in the open water. No shoreline or open water HABs were reported in Lake Oscaleta in 2017.

Aquatic invasive species: Eurasian watermilfoil, curly-leafed pondweed, and brittle naiad have been reported on Lake Oscaleta. This suggests that the lake is susceptible to other AIS introductions, despite the lack of public access. Calcium levels are probably too low to support zebra mussels, and these invasive mussels have not been reported in Lake Oscaleta.

Indicated Actions: Individual stewardship activities such as pumping your septic system, growing a buffer of native plants next to the water bodies, and reducing erosion from shoreline properties and runoff into the lake will help to improve lake health by reducing nutrient and sediment loading to the lake. Visiting boats should be inspected to reduce the risk of new invasive species, and continued monitoring for invasive species is warranted. Continued algae bloom education and monitoring for HABs is recommended, particularly since shoreline HABs are occasionally reported in Lake Oscaleta. These blooms should be avoided.
How to Read the Report

This guide provides a description of the CSLAP report by section and a glossary. The sampling site is indicated in the header for lakes with more than one routine sampling site.

Physical Characteristics influence lake quality:
- Surface area is the lake’s surface in acres and hectares.
- Max depth is the water depth measured at the deepest part of the lake in feet and meters.
- Mean depth is either known from lake bathymetry or is 0.46 of the maximum depth.
- Retention time is the time it takes for water to pass through a lake in years. This indicates the influence of the watershed on lake conditions.
- Lake classification describes the “best uses” for this lake. Class AA, AA Spec, and A lakes may be used as sources of potable water. Class B lakes are suitable for contact recreational activities, like swimming. Class C lakes are suitable for non-contact recreational activities, including fishing, although they may still support swimming. The addition of a T or TS to any of these classes indicates the ability of a lake to support trout populations and/or trout spawning.
- Dam classification defines the hazard class of a dam. Class A, B, C, and D dams are defined as low, intermediate, high, or negligible/no hazard dams in that order. “0” indicates that no class has been assigned to a particular dam, or that no dam exists.

Watershed characteristics influence lake water quality:
- Watershed area in acres and hectares
- Land use data come from the most recent (2011) US Geological Survey National Land Use Cover dataset

CSLAP Participation lists the sampling years and the current year volunteers.

Key lake status indicators summarize lake conditions:
- Trophic state of a lake refers to its nutrient loading and productivity, measured by phosphorus, algae, and clarity. An oligotrophic lake has low nutrient and algae levels (low productivity) and high clarity while a eutrophic lake has high nutrient and algae levels (high productivity) and low clarity. Mesotrophic lakes fall in the middle.
- Harmful algal bloom susceptibility summarizes the available historical HAB data and indicates the potential for future HAB events.
- Invasive vulnerability indicates whether aquatic invasive species are found in this lake or in nearby lakes, indicating the potential for further introductions.
- Priority waterbody list (PWL) assessment is based on the assessment of use categories and summarized as fully supported, threatened, stressed,
impaired, or precluded. Aesthetics and habitat are evaluated as good, fair, or poor. The cited PWL assessment reflects the “worst” assessment for the lake. The full PWL assessment can be found at http://www.dec.ny.gov/chemical/36730.html#WIPWL.

Current year sampling results

- Results for each of the sampling sessions in the year are in tabular form. The seasonal change graphically shows the current year results. Red shading indicates eutrophic readings.
- HAB notification periods on the DEC website, updated weekly http://www.dec.ny.gov/chemical/83310.html
- Shoreline HAB sample dates and results. Samples are collected from the area that appears to have the worst bloom. Red shading indicates a confirmed HAB.
- HAB sample algae analysis. Algae types typically change during the season. These charts show the amount of the different types of algae found in each mid-lake or shoreline sample. Samples with high levels of BGA are HABs. The second set of charts show the level of toxins found in open water and shoreline samples compared to the World Health Organization (WHO) guidelines.
- If there are more than ten shoreline bloom samples collected in a year, bloom sample information is instead summarized by month (May-Oct.) as minimum, average, and maximum values for blue-green algae and microcystin.

Long Term Trend Analysis puts the current year findings in context. Summer averages (mid-June thru mid-September) for each of the CSLAP years show trends in key water quality indicators. The graphs include relevant criteria (trophic categories, water quality standards, etc.) and boundaries separating these criteria.

In-Season Analysis shows water temperature and water clarity during the sampling season. These indicate seasonal changes and show the sample year results compared to the typical historical readings for those dates.

The Lake Use Scorecard presents the results of the existing Priority Waterbody List assessment for this lake in a graphical form and compares it to information from the current year and average values from CSLAP data and other lake information. Primary issues that could impact specific use categories are identified, although more issues could also affect each designated use.

The Lake Summary reviews and encapsulates the data in the lake report, and provides suggested actions for lake management.
Glossary of water quality and HAB indicators

Clarity (m): The depth to which a Secchi disk lowered into the water is visible, measured in meters. Water clarity is one of the trophic indicators for each lake.

TP (mg/L): Total phosphorus, measured in milligrams per liter at the lake surface (1.5 meters below the surface). TP includes all dissolved and particulate forms of phosphorus.

Deep TP: Total phosphorus measured in milligrams per liter at depth (1-2 meters above the lake bottom at the deepest part of the lake)

TN: Total nitrogen, measured in milligrams per liter at the lake surface. TN includes all forms of nitrogen, including NOx (nitrite and nitrate) and NH4 (ammonia).

N:P Ratio: The ratio of total nitrogen to total phosphorus, unitless (mass ratio). This ratio helps determine if a lake is phosphorous or nitrogen limited.

Chl.a (µg/L): Chlorophyll a, measured in micrograms per liter. Indicates the amount of algae in the water column.

pH: A range from 0 to 14, with 0 being the most acidic and 14 being the most basic or alkaline. A healthy lake generally ranges between 6.5 and 8.5.

Cond (µmho/cm): Specific conductance is a measure of the conductivity of water. A higher value indicates the presence of more dissolved ions. High ion concentrations indicate hardwater, and low show softwater.

Upper Temp (°C): Surface temperature, measured in degrees Celsius

Deep Temp (°C): Bottom temperature, measured in degrees Celsius

BG Chl.a (µg/L): Chlorophyll a from blue-green algae, measured in micrograms per liter

HABs: Harmful Algal Blooms. Algal blooms that have the appearance of cyanobacteria (BGA)

BGA: Blue-green algae, also known as cyanobacteria

Microcystin (µg/L): The most common HAB liver toxin; total microcystin above 20 micrograms per liter indicates a “high toxin” bloom. However, ALL BGA blooms should be avoided, even if toxin levels are low.

Anatoxin-a (µg/L): A toxin that may be produced in a HAB which targets the central nervous system. Neither EPA nor NYS has developed a risk threshold for anatoxin-a, although readings above 4 micrograms per liter are believed to represent an elevated risk.